1. What is the pH of the solution that results from adding 50.0 mL of 4.0 M HCl to 50.0 mL of 2.0 M NaOH.

A) 0.00 B) 1.00 C) 2.00 D) 7.00 E) 14.00

2. Which 1.0 M solution has the lowest pH?

Acid	Ka	
HF	3.5×10^{-4}	
HCN	1.0×10^{-10}	
HCOOH	1.8×10^{-4}	
CH₃COOH	1.8×10-≶	

- A) HF
- B) HCN
- C) HCOOH
- D) CH₃COOH
- E) It cannot be determined from the information given
- 3. Which 1.0 M acid solution has the largest [H₃O⁺]?

Acid	Ka	
H₃BO₃	$7.3 imes 10^{-10}$	
H ₂ CO ₃	4.3 × 10-7	
HNO ₂	4.6×10^{-4}	
H ₂ SO ₃	1.5×10^{-2}	

- A) H₃BO₃
- B) H₂CO₃
- C) HNO₂
- D) H₂SO₃
- E) It cannot be determined from the information given
- 4. The equation for the ionization of HBr is: $HBr(aq) = H^+(aq) + Br^-(aq)$

The equation for the ionization constant, K_a , is

A)
$$K_{a} = [HBr]$$

B) $K_{a} = [H^{+}][Br]$
C) $K_{a} = \frac{[HBr]}{[H^{+}][Br^{-}]}$
B) $K_{a} = \frac{[H^{+}][Br^{-}]}{[HBr]}$
E) $K_{a} = \frac{[HBr][Br^{-}]}{[H^{+}]}$

5. What is the pH of a 0.100 M CH₃COOH (K_a = 1.8×10^{-5} at 298 K) solution?

A) 1.00 B) 2.87 C) 3.13 D) 7.00 E) 13.0

- 6. What is the hydrogen ion concentration, [H⁺], of a 0.010 M HOCl (K_a = 4.0×10^{-8} at 298 K) solution?
 - A) 4.0×10^{-10} MB) 4.0×10^{-18} MC) 2.0×10^{-5} MD) 2.0×10^{-4} ME) 1.0×10^{-2} M
- 7. In a 0.10 M solution of hydrofluoric acid, HF, the [H⁺] is 8.2×10^{-3} M. What is the ionization constant?
 - A) $K_a = 8.2 \times 10^{-6}$ B) $K_a = 6.7 \times 10^{-5}$ C) $K_a = 1.6 \times 10^{-5}$ D) $K_a = 6.7 \times 10^{-4}$
 - E) $K_a = 7.5 \times 10^{-4}$
- 8. Which aqueous solution contains the lowest concentration of hydrogen ions, H⁺?

	Conc.	Acid	Ka
I	0.10 M	HBr	Large
II	1.0 M	HCN	1.0×10^{-10}
III	0.1 M	H2SO4	Large
IV	1.0 M	CH3COOH	1.8×10-⁵

- A) IB) IIC) IIID) IV
- E) both I and III
- 9. What is the $[H_3O^+]$ in a solution with a pOH of 4.60?
 - A) 4.0×10^{-10} M B) 2.5×10^{-5} M C) 3.3×10^{-3} M D) 6.6×10^{-1} M E) 9.7×10^{-1} M
- 10. Which equation correctly relates pH and [H₃O⁺]?
 - A) $pH = log [H_3O^+]$ B) $pH = 14 - [H_3O^+]$ C) $pH = -log [H_3O^+]$ D) $pH = pK_w - [H_3O^+]$ E) $pH = [H_3O^+] - 14$